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ABSTRACT

This paper is a direct continuation of [D2]. The main result proved here,

combined with Theorem 1 of [D2] widens the variety of known possibil-

ities of what the simplex of invariant measures in a minimal topological

dynamical system can be. We show that it can be equivalent, modulo

affine homeomorphism of Choquet simplexes and modulo isomorphisms of

the ergodic measures playing the role of the extreme points, to any face

of the simplex of invariant measures of any zero-dimensional topological

dynamical system, as long as this face contains no periodic measures. In

particular, this implies that any formal simplex spanned by any choice of

countably many nonperiodic ergodic measures can be realized in a minimal

system.

1. Introduction

By an assignment we understand a function Ψ : K → {mpt’s} defined on an

abstract metrizable Choquet simplex K (see, e.g., [P] for the definition of a

Choquet simplex), whose “values” are measure-preserving transformations, as

follows: for p ∈ K, Ψ(p) = (Xp, Σp, µp, Tp), where Tp is an endomorphism of

a standard probability space (Xp, Σp, µp). Two assignments, Ψ and Ψ′ defined

on two simplexes K and K ′, respectively, are considered equivalent if there
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exists an affine homeomorphism π : K → K ′ such that Ψ(p) and Ψ′(π(p)) are

isomorphic (as measure-preserving transformations) for every p ∈ K.

If (X, T ) is a topological dynamical system (i.e., T : X → X is a continuous

self-map of a compact metric space) then the set of all T -invariant measures

supported by X , endowed with the weak* topology of measures, is a Choquet

simplex, and the assignment by identity Ψ(µ) = (X, ΣB, µ, T ) (where ΣB is the

Borel sigma-field) is what we call the natural assignment of (X, T ).

An assignment is called topological (minimal) if it is equivalent to a nat-

ural assignment of a topological (minimal) dynamical system. Two obvious

conditions for an assignment to be topological are: (1) systems assigned to the

extreme points must be ergodic, and (2) the assignment is (up to isomorphism)

determined by its restriction to the extreme points via the ergodic decom-

position rule (see [D2] for a more precise formulation). We are interested

in providing further criteria allowing to determine whether a given abstract

assignment is minimal (or at least topological).

The main result of [D2] asserts that any topological assignment arising from

a zero-dimensional dynamical system without periodic points is also minimal.

Note that nonperiodicity i.e., lack of periodic systems in the range (equiv-

alently, lack of periodic points in any topological realization) is a necessary

requirement for a nontrivial topological assignment to be minimal. This result

has allowed us, among other things, to establish that every nonperiodic assign-

ment on a finite set extends (by convex combinations of measures) to a minimal

assignment on the simplex spanned by this set: the disjoint union of strictly

ergodic realizations via Jewett-Krieger Theorem (more precisely, via its ver-

sion for noninvertible systems proved by Rosenthal [R]) provides a nonperiodic

zero-dimensional model. In [D2], we have postulated a conjecture that similar

freedom should be valid for Choquet simplexes spanned by countable sets of ex-

treme points. As another application of the result in [D2] we have constructed a

noninvertible version of a universal minimal system of B. Weiss (see [W]): a

minimal system whose assignment’s range contains, up to isomorphism, all pos-

sible (both invertible and noninvertible) nonperiodc measure-preserving trans-

formations.

In the meantime, I. Kornfeld and N. Ormes [K-O] have proved a beautiful

theorem, implying that our aforementioned conjecture is true whenever all the

systems assigned to the countably many extreme points of the simplex are (in

addition to being nonperiodic) invertible. The authors are even able to construct



Vol. 165, 2008 FACES OF SIMPLEXES OF INVARIANT MEASURES 191

a minimal realization of an arbitrary such assignment on a simplex K within

any topological orbit equivalence class of Cantor minimal systems whose sim-

plex of invariant measures is affinely homeomorphic to K (the affine-topological

“shape” of this simplex is an invariant of the orbit equivalence relation, so this

requirement cannot be skipped). The methods used by the authors are com-

pletely different from those of [D2] and rely on multitowers constructions and

manipulations of the order of the floors. These orbit techniques seem impossible

to be used in the noninvertible situation, also, any applications to simplexes with

uncountable sets of extreme points seem rather hard. Our method, based on

symbolic representations and codes, allows us to deal with nonivertible systems

and uncountable extreme sets, but in turn, are completely unfit for exploration

of the orbit equivalence classes. Unfortunately, neither methods allow excur-

sions beyond dimension zero, further than some direct consequences of theorems

on zero-dimensional modeling.

In this work, sticking to our symbolic methods, we push a bit further. We

prove that any “nonperiodic face” of a topological zero-dimensional assignment

Ψ is itself a topological zero-dimensional assignment, hence, by the result of

[D2], also a minimal one. By a nonperiodic face of an assignment Ψ on a

simplex K we mean the restriction of Ψ to a face of K (i.e., to a subsimplex

whose all extreme points are extreme in K), such that the range of this restric-

tion avoids periodic systems. We do not require that the entire assignment Ψ

is nonperiodic, which will allow us to apply the theorem to the full shift on

a finite or Cantor alphabet. This result permits, among other things, to es-

tablish that the conjecture formulated in [D2] is true in general, i.e., without

assuming invertibility. To demonstrate the potential of the result also for sim-

plexes with uncountably many extreme points, we describe a class of “Bernoulli

assignments” hitherto not known to be minimal.

2. Marker lemmas

Throughout this paper we will be working in the following context: (X, T ) is

a zero-dimensional topological dynamical system, i.e., X is a zero-dimensional

compact metric space and T : X → X is continuous. We are not assuming

invertibility or surjectivity of T . The key tool in this work will be so-called

markers, i.e., sets F ⊂ X such that every orbit from a suitable set visits F

infinitely many times with gap lengths in a specified range. The goal of this
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section is to extend X to a “markered system” X̃ equipped with a decreasing

sequence of clopen (i.e., closed and open) marker sets, each visited by every

orbit infinitely many times with gaps in a specified range. Precise description

is formulated in the Lemma 2.13.

Let us begin with a variant of “Krieger’s Marker Lemma” (as it is called

in [B]). The reader may find an invertible expansive version in [B] and a non-

invertible version in absence of periodic points in [D2]. Below we make no

assumptions other than dimension zero of X .

Lemma 2.1: For every n ≥ 1 and ǫ > 0 there exists a clopen set F and N ∈ N

such that:

(2.2) T−iF are pairwise disjoint for i = 0, 1, . . . , n, and

(2.3) T−iF for i = 0, 1, . . . , 2n cover the set X \ T−N(P ǫ
n)

where P ǫ
n denotes the ǫ-neighborhood of the set Pn of all periodic points with

periods not exceeding n.

Proof. The set Pn is closed, so replacing, if necessary, P ǫ
n by a smaller neigh-

borhood we can assume that P ǫ
n is clopen. For given n every point x ∈ X \ P ǫ

n

belongs a clopen set Ex ⊂ X \ P ǫ
n such that its n + 1 consecutive preimages

T−i(Ex) (0 ≤ i ≤ n) are pairwise disjoint. Choose a finite cover U = {Uj}1≤j≤m

of X \ P ǫ
n by some of the sets Ex. The family U ′ = {U ′

j} = {T−nm(Uj)} (m

equals the cardinality of U), is a cover of X \T−nm(P ǫ
n) with the same property

that each element has pairwise disjoint n + 1 consecutive preimages.

Define inductively

F1 := U ′
1

Fj+1 := Fj ∪

(

U ′
j+1 \

⋃

−n≤i≤n

T i(Fj)

)

and set F = Fm. Because in fact this construction involves set operations only

on the sets T−k(Uj), with k ≥ n, it is seen that the sets Fj (1 ≤ j ≤ m) are

clopen, and have, for every pair of integers i, i′ between 0 and n, the property

T−i′(T i(Fj)) = T i−i′(Fj). The verification of (2.2) is now straightforward.

For (2.3), let N = nm + n and consider a point y ∈ X \ T−N(P ǫ
n). Because

T n(y) ∈ X \T−nm(P ǫ
n), there is 1 ≤ j ≤ m such that T n(y) ∈ U ′

j. If j = 1 then

T n(y) ∈ F1 ⊂ F , hence y ∈ T−n(F ). Otherwise, we can write T n(y) ∈ U ′
j−1+1

and then either T n(y) ∈ Fj which again implies y ∈ T−n(F ), or else it must
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be that T n(y) ∈
⋃

−n≤i≤n T i(Fj−1). But in the last case, T n(y) ∈ T i(Fj−1) for

some −n ≤ i ≤ n, hence y ∈ T i−n(Fj−1) ⊂ T i−n(F ), where −2n ≤ i− n ≤ 0.

This completes the proof.

If (X, T ) is represented as a subshift system over some (compact) alphabet A

(i.e., X ⊂ AN0 and T (x)i = xi+1 for x = (xi)i∈N0 ∈ X), and the marker set F is

clopen, it is customary to mark the visits of the orbit of a point x in F at times

n1, n2, . . . by placing some kind of extra symbol (star) above the coordinates

n1, n2, . . . in the sequence representing x. Because F is clopen, such procedure

produces a topologically conjugate representation of the system (X, T ) (now

with the enhanced alphabet A× {∅, ∗}).

Lemma 2.4: Let (X, T ) be a zero-dimensional dynamical system. For every

n ≥ 1 there exists a set G such that:

(2.5) T−iG are pairwse disjoint for i = 0, 1, . . . , n,

(2.6) T−iG for i = 0, 1, . . . , 2n cover the set X \APn!, and

(2.7) δG ⊂ APn!,

where APn! denotes the set of points asymptotic to points from Pn! and δG

denotes the boundary of G.

Proof. In this proof we find the “symbolic” setup (with cylinder sets) more

convenient than dealing with general clopen sets and their preimages. The zero-

dimensional system (X, T ) can be represented as an inverse limit of subshifts

over finite alphabets
←−−
lim

i→∞
(Xi, Si),

i.e., each x ∈ X has a “matrix” form: X ∋ x = [xi,j ]i∈N,j∈N0 where, for each i,

xi,j ranges over a finite set Λi, and the map on X is T (x) = [xi,j+1].

Fix some n ∈ N. By Lemma 2.1 applied to (Xi, Si), each row xi of each

matrix x comes equipped with a system of stars with the following properties:

(2.8) the stars appear at distances not smaller than n + 1,

(2.9) if a star at position j is followed by a gap (with no stars) longer than

2n then the block in xi between positions j +Ni and j + Ni + 2n + 1,

is periodic with a period not exceeding n.

(Lemma 2.1 ensures that such gap implies that the point Sj
i (xi) is in S−Ni

i (P ǫ
n).

Because the alphabet is finite, we may choose ǫ small enough, so that this will

imply (2.9).) We shall now define an intermediate marker set G′, as follows: for
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a matrix x observe the trapezoidal regions of coordinates ∆k = {(i, j) : i + j ≤

2n + k, i ≤ k}. We classify x to G′ if and only if there exists k, such that a star

appears exactly at the position (k, n) and it is unique within ∆k (see Figure 1

below for ∆4 (n = 3)). We claim the following:

i\j 0 1 2 3 4 5 6 7 8 9

1

2

3

4 ∗

Figure 1

(2.10) T−iG′ are pairwse disjoint for i = 0, 1, . . . , n,

(2.11) T−iG′ for i = 0, 1, . . . , cover the set X \APn!, and

(2.12) δG′ ⊂ APn!.

For (2.10) imagine a matrix x ∈ G′ visiting G′ at a time 0 < m ≤ n. There

would have to be a star in x at (k, n) for some k, and another one at (k′, n+m)

for some k′ such that the first one is unique in ∆k, and the other is unique in

the region ∆k′ shifted by m units to the right. If k ≤ k′ then the star at (k, n) is

visible in the shifted ∆k′ , while if k > k′ then the star at (k′, n + m) is covered

by ∆k, so both cases are eliminated.

For (2.11) first observe that a row with only finitely many stars is eventually

periodic with a period not larger than n: it cannot happen that for some j, the

block of xi between the positions j and j + 2n + 1 is periodic with a period

p ≤ n and the block between j + 1 and j + 2n + 2 is periodic with some other

period p′ ≤ n but not with p. Then note that a matrix x whose each row is

eventually periodic with a period not exceeding n is asymptotically periodic

with a period at most n!. For x not of such form, let k be the smallest index

of a not eventually periodic row. The kth row contains infinitely many stars,

while all rows with lower indexes (if k > 1) contain at most finitely many of

them. Thus, we can find an i > 0 such that T i(x) has a star at the position

(k, n) and no stars in rows with smaller indexes. By (2.8) and by the shape of

∆k, there will be no other stars in the kth row of T ix within ∆k. Thus the star

at (k, n) will be unique in this region, classifying T ix to G′.

Finally, observe that the algorithm for classifying x to G′ (or to its comple-

ment) is decisive whenever the region ∆k covers at least one star. Also note
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that these regions grow with k and eventually cover the whole domain N×N0.

Now, if a point has a row which is not eventually periodic with a period at

most n, then it has a star somewhere, and thus the algorithm stops at a finite

k, hence requires examining only finitely many coordinates (those within ∆k).

This implies continuity of the characteristic function of G′ at x, so that x is not

in the boundary, as required in (2.12).

It remains to define the desired set G. This will be done using the G′-markers

(obtained at times of visits to G′). Namely, we classify an x to G if and only

if the following happens: the smallest m > 0 with T m(x) ∈ G′ is divisible by

n + 1. Since every point, unless it is asymptotically periodic with a period not

exceeding n!, has a G′-marker at a positive position (apply (2.11) to T (x)),

and finding this marker requires examining only finitely many coordinates, the

classification of such a point to G or to its complement also requires examining

only finitely many coordinates. So, like for G′, the boundary of G is contained

in APn!. Finally, we need to observe that every point x /∈ APn! will receive

infinitely many G-markers appearing at distances ranging between n + 1 and

2n + 1. Clearly, every such point has infinitely many G′-markers. Consider

two consecutive G′-markers, at positions j′ < j. It is not hard to see that

the G′-marker at position j “produces” G-markers periodically, at positions

j − (n + 1), j − 2(n + 1), j − 3(n + 1), . . . , as long as they are right of j′. Now,

the G′-marker at j′ does not produce a G-marker at its own position j′, only

at j′ − (n + 1) (and to the left), so that a gap of size between n + 1 and 2n + 1

is maintained.

Lemma 2.13: Let (X, T ) be zero-dimensional and such that the set of points

not asymptotic to periodic points is dense. Then there exists a zero-dimensional

extension (X̃, T̃ ) of (X, T ) which is 1-1 except on points asymptotic to periodic

points in X , and such that X̃ admits a descending sequence of clopen marker

sets G̃t (t ≥ 1) each visited by every orbit infinitely many times with gaps

ranging between pt and 3pt, where pt is a rapidly growing to infinity sequence

of positive integers.

Proof. Modulo the previous lemma, the rest of the proof relies on standard

marker techniques. We will sketch it only briefly, skipping the detailed verifi-

cation of several minor claims. Let (nt)t∈N be a rapidly increasing sequence of

natural numbers. The marker set of Lemma 2.4 obtained for nt will be denoted

by Gt. We will abbreviate Gt-markers as t-markers. It is easy to modify the
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sets Gt to obtain new sets G′
t such that G′

t+1 ⊂ G′
t for every t: proceeding

inductively on t, a point belongs to G′
t+1 if it is in G′

t and this is the last visit

in G′
t before (or at) a visit in Gt+1. Roughly speaking, a new t + 1-marker is

obtained by moving an old t+1-marker to the nearest new t-marker on the left.

Because, to determine each new marker we never use the information left from

it, this procedure is shift invariant even on one-sided sequences. The modified

sets G′
t still have their boundaries contained in APnt!, and all other orbits will

visit them infinitely many times with gaps in a slightly enhanced range: assum-

ing that nt+1 is much larger than nt, the new gaps will still range between, say
3
4nt+1 =: pt and 9

4nt+1 = 3pt.

We can now visualize all the (new) markers in one additional row, say, row

number zero, where, at coordinate n we put the maximal integer t such that

T n(x) ∈ G′
t (or 0 if T n(x) /∈ G′

1). In other words, the marker t indicates the

simultaneous occurrence of the s-markers for s = 1, 2, . . . , t. The points which

visit the intersection of all sets G′
t will receive the marker ∞; this may happen

along an orbit only once. One has to realize that because the sets G′
t are not

clopen, by visualizing the markers we will change the topology of our space.

We can now compactify it, by taking closure in the shift space in which the

symbols t are endowed with the topology of a sequence converging to the point

∞. In such a compactification, the points whose orbits visit the boundaries of

the sets G′
t (all such point belong to AP , the set of points asymptotic to periodic

points) will split, receiving all possible configurations of markers resulting from

approaching sequences of other points. Because the property the gaps between

occurrences of the t-markers (integers t or larger in the zero row) range between

pt and 3pt is closed, and possessed by a dense set of points, it will pass to all

points obtained from the split points. Note, that there is no ambiguity caused

by the additional points in the closure of the union of the boundaries of G′
t

which are not in AP : because they lie in the intersection of the interiors of all

the sets G′
t, they will always receive the marker ∞. Such compactification X̃

(with T̃ denoting the shift map on X̃) factors onto X by simply deleting the

zero row and this factor map is injective except on the preimage of AP . A point

belongs to G̃t if and only if it has (in the row number zero) a marker t or larger

at the coordinate zero. So defined sets G̃t are obviously clopen in X̃.

Notice that there are no periodic points in the extension X̃.
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3. The simplex lemma

As we have already mentioned, a zero-dimensional dynamical system (X, T ) can

be represented as an inverse limit of subshifts over finite alphabets. Viewing the

columns in the resulting matrix representation as elements of the Cantor set C

we can replace the matrix by only one row with “symbols” in C, so that (X, T )

becomes a subsystem of CN0 . (In this manner, CN0 with the shift map becomes a

universal system containing all zero-dimensional systems as invariant subsets.)

Now, the extended system X̃ of Lemma 2.13 becomes a subsystem of the “uni-

versal system with markers” C̃N0 with the alphabet C̃ := {0, 1, 2, . . . ,∞} × C.

(We picture each element as two rows: the zero row containing the markers

and row number one with the symbols from C; there are no restrictions on the

occurrences of the markers in the zero row of this large system.) For technical

reasons, in the representation of X̃ we introduce one modification: we “double”

each marker t > 0 in the zero row by repeating it at the preceding position (the

one neighboring on the left). We may assume that p1 ≥ 3, so such doubling

causes no collisions of markers and is reversible. Obviously, this procedure is

shift invariant and leads to a conjugate representation of X̃ .

By a block B of length n we will mean, a finite sequence

B = 〈b0, b1, . . . , bn−1〉 ∈ C̃
n.

To every such block we can associate the “cylinder set” [B] ⊂ C̃N0 defined as

{x : xi = bi, i = 0, 1, . . . , n− 1}. Unlike in symbolic dynamics, this cylinder is

not clopen, only closed. To each block B we can also associate the shift invariant

measure µB supported by the periodic orbit of the point obtained as the infinite

concatenation BBB . . . . Notice that even if the block B appears in X̃ , µB is

never supported by X̃, but it belongs to the simplex of all invariant measures

of the universal system with markers. In this large simplex we fix some metric

(denoted as dist) which agrees with the weak* topology of measures. In this

manner we can measure the distance between invariant measures and blocks:

dist(B, µ) stands for dist(µB , µ).

Definition 3.1: By a t-block we shall mean any block of length between pt and

3pt with exactly two integers larger than or equal to t in the zero row: in the

leftmost and rightmost entries of this block.
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Note that every element of X̃ decomposes in a unique way as a concatenation

of t-blocks, of which the first one may be “incomplete”, i.e., truncated on the

left. The goal of doubling the markers was to ensure that cylinders associated

to two different t-blocks are always disjoint.

Lemma 3.2: Let K̃ be a face in the simplex P̃ of the invariant measures of X̃.

Fix δ > 0 and ǫ > 0. For t ∈ N, let At denote the union of all (closed) cylinders

corresponding to the t-blocks B such that dist(B, K̃) > δ. Then there exists t

such that µ(At) ≤ ǫ/pt for every µ ∈ K̃.

Proof. We will use several times the following fact on the weak topology of

measures: If A is closed (open) then the function µ 7→ µ(A) is an upper (lower)

semi-continuous function of the measure. Recall that we have a natural con-

tinuous map on the set M(P̃), of all probabilities ξ defined on the simplex P̃

(M(P̃) is also equipped with the weak* topology), onto P̃ by barycenter, i.e.,

ξ 7→

∫

µ dξ(µ).

(The above map restricted to measures ξ supported by the ergodic measures

becomes a bijection, whose inverse µ 7→ ξ is the familiar ergodic decom-

position.)

If now F is a closed subset of P̃ , then, by upper semi-continuity, the set of

probabilities ξ with ξ(F ) ≥ ǫ is closed (hence compact). So its image by the

barycenter map, i.e., the set of measures µ which admit a decomposition ξ (not

necessarily supported by the ergodic measures) with ξ(F ) ≥ ǫ, is also compact.

The complement set (denote it by V ) is hence open.

Let us return to the assumptions of the lemma. For each real-valued contin-

uous function f on C̃N0 the integral
∫

f dµB reacts continuously to the change

of the values bi defining B. Thus, if dist(B, K̃) > δ (which can be determined

using integrals of finitely many continuous functions) then the same holds for B

replaced by any block sufficiently close to B. Also note that a block sufficiently

close to a t-block is again a t-block. This implies that At is an open set. As

a consequence, the function µ 7→ µ(At) is lower semi-continuous on invariant

measures. Let now F denote the (closed) complement of the open δ ball around

K̃ (all measures µB accounted in the definition of At are in F ). By the dis-

cussion in the preceding paragraph, the set of all invariant measures such that

in any decomposition the contribution of the measures from F is smaller than
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ǫ, is an open set V , obviously containing K̃ (because K̃ is a face, any ξ with

barycenter at K̃ is supported by K̃, so the contribution of F is zero). Let η > 0

be the radius around K̃ contained in V . It is elementary to see (compare Fact

2(3) in [D-S]) that if t is large enough then for any concatenation of t-blocks,

C = B1B2 · · ·Bm, the measure µC is η/2-close to the average

µC =

m∑

i=1

|Bi|

|C|
µBi

.

It suffices to prove the assertion for each ergodic measure µ ∈ K̃. Suppose

that µ(At) > ǫ/pt for such a µ. Then, by lower semi-continuity, ν(At) > ǫ/pt

for all ν in some ζ-ball around µ. We may choose ζ < η/2. By a standard fact

in ergodic theory (existence of generic points), in this ball, there is a measure

of the form µC for some long block C occurring in X̃. We may as well assume

that C is a concatenation of t-blocks. Now, µC(At) = r/|C|, where r is the

count of the t-blocks Bi with dist(Bi, K̃) > δ in the concatenation defining C

(the markers prevent other occurrences of t-blocks in C). Since µC(At) > ǫ/pt,

we obtain r > (ǫ|C|)/pt, which means that the sum of coefficients which the

selected measures µBi
receive in the average measure µC (which is certainly at

least rpt/|C|) is bigger than ǫ. A contradiction, because the average measure is

contained in V (its distance to µ is smaller than ζ+η/2 < η), so the contribution

of these measures µBi
must be smaller than ǫ (because they are in F ).

4. The main theorem

Theorem 4.1: Let (X, T ) be a zero-dimensional dynamical system, and let K

be a face in the simplex P of the invariant measures of (X, T ). Assume that

K contains no periodic measures. Then there exists another zero-dimensional

dynamical system (Y, S), whose natural assignment is equivalent to the identity

assignment on K.

Before the proof we formulate the corollary important for minimal systems.

It follows by composing Theorem 4.1 and Theorem 1 of [D2].

Corollary 4.2: Let K be a face of the simplex of invariant measures for a

zero-dimensional dynamical system. Assume that K contains no periodic mea-

sures. Then there exists a Cantor minimal system, whose natural assignment

is equivalent to the identity assignment on K.
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Proof of Theorem 4.1. Because all invariant measures in K are supported by

points not asymptotic to periodic ones, we can replace X by the closure of

X \ AP . This will allow us to use Lemma 2.13. Fix a summable sequence of

positive numbers ǫt (t ∈ N). We begin by passing to the extension X̃ represented

as the shift on sequences over the alphabet C̃ (already incorporating the markers

t ∈ {0, 1, . . . ,∞}). Below every such sequence, (which throughout this proof

will be considered a single row number one) we reserve room for further rows

(numbered 2, 3, . . . ), which at the initial moment remain empty. Elements of

such form (belonging to (C̃∪{∅})N×N0) will be called “matrices”. The metric on

such matrices is defined so that rows below number t contribute to the distance

by an ignorably small fraction of ǫt.

The simplex P̃ of invariant measures of X̃ maps continuously onto P , injec-

tively on nonperiodic measures. Let K̃ denote the lift of K. Because K contains

no periodic measures, the identity assignments on K and on K̃ are equivalent.

Thus, it suffices to construct a system (Y, S) whose assignment is equivalent to

the identity on K̃.

The proof has the following framework: By inductive application of contin-

uous codes φt, we will perform a sequence of deformations (by the maps Φt

conjugated to φt) of the entire simplex P̃ toward K̃, which leave K̃ almost in-

variant. In the limit system only the measures originating from K̃ will remain

unchanged (up to an isomorphism), while the other will “sink” in the limit

image of K̃.

Great deal of the complication results from not assuming invertibility; a shift-

invariant code on one-sided sequences must not refer to the information stored

left from the output coordinate. The simplest idea for a code moving all in-

variant measures toward K̃ would be, to select a collection of t-blocks close to

K̃ in the metric dist (call them “close”; all other t-blocks are “distant”), and

in every element of the shift space to successively replace (in an injective way)

the distant t-blocks by the close ones. In fact, such a code can be successfully

applied in the invertible case. However, because for all but the first coordinate

in a t-block, part of the information whether it is distant or close is contained

left from this coordinate, such an algorithm cannot be applied to one-sided se-

quences. Instead, we will adopt a different strategy: we will group the t-blocks

in finite “packages”. Then we will scan every package from right to left check-

ing every t-block for its “type”. Once a distant t-block is detected, we leave
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it alone, but from now on we replace all the remaining t-blocks in this pack-

age (left from the detected block), regardless to their types, by the close ones.

This procedure guarantees, that after the code is applied there are definitely

more close t-blocks than distant ones. On the other hand, because in points

belonging to the supports of the measures from K̃, most of the t-blocks are

close (and hence there are many packages consisting entirely of close t-blocks),

a large fraction of the t-blocks will not be affected at all. For this reason, the

codes will converge almost surely at such points. Difficulties related to the fact

that the length of the replacing concatenation of close t-blocks need not match

that of the replaced concatenation will be solved by using a “cutting algorithm”

introduced in [D2].

By choosing a subsequence of the marker sets, we may assume that the as-

sertion of Lemma 3.2 is fulfilled for even indices 2t with ǫ = δ = ǫ2t . We may

arrange that the bounds p2t+1 and 3p2t+1 on the lengths of the (2t + 1)-blocks

equal p2t/ǫt and 3p2t/ǫt, respectively. From now on we change the terminol-

ogy: the 2t-blocks will be called t-blocks, while the (2t+1)-blocks will be called

packages of t-blocks. The markers 2t are changed to t while 2t+1 is replaced

by t with some kind of indicator “end of package”, say it looks like t|. The end

of a t′-block (t′ > t) is automatically an end of package of t-blocks. Every

package concatenates between 1/(3ǫt) and 3/ǫt component t-blocks.

The map (and code) number one is the identity. Suppose we have defined

a code φt (and its conjugate map Φt on measures), such that for each x ∈

X̃ , φt(x) is still a concatenation of packages of t-blocks with the same length

constraints as for x. Assume that in each image φt(x) the rows with indices

larger than t remain empty, while the contents of the original one row of x is

stored in the “bottom line” of φt(x), i.e., in the line containing in each column

the last nonempty position. We can now describe the construction of the code

transforming φt(x) to φt+1(x). In other words, φt+1 will be a composition of φt

with the code described below.

A t-block appearing in φt(X̃) will be called “regular”. A regular t-block B

is “close” if dist(B, Φt(K̃)) ≤ ǫt. Otherwise it is called “distant”. We begin

by fixing one close t-block B0. The existence of such an object is guaranteed

whenever the minimal length pt of the t-blocks is sufficiently large; this condition

we can easily satisfy. If the leading marker of B0 is larger than t we replace it

by t; this changes the distances insignificantly, so B0 remains close.



202 T. DOWNAROWICZ Isr. J. Math.

Now, in every package of t-blocks in x, starting from the right end we check

every component t-block. A package whose all components are close will pass

to φt+1(x) unchanged (except a possible minor modification of the right end,

which we describe in a moment). The first detection of a distant t-block triggers

the replacement mechanism: the remaining part of the package left from that

distant t-block is replaced by periodic repetitions of B0. At the same time,

we copy the contents of the bottom line of the replaced section into the (so

far empty) row number t + 1. Here we encounter further complications: the

last inserted copy of B0 may be cut at a random place. We need some control

over the length of the “incomplete B0”, otherwise such blocks from several steps

could accumulate in a long string violating syndetic occurrences of some smaller

blocks. To achieve this control, we move the “end of package” indicator (or any

marker t′ > t if it was there) one t-block further to the left and then we carefully

choose a place where we terminate the insertion somewhere within this added t-

block (see Figure 2). The description of the “cutting algorithm” which precisely

determines this place will be provided later. This last modification clearly

affects the following package (trims it by one t-block on the right). Because the

packages must be coded in the order from left to right, the possible trimming

happens after the testing and coding. The trimming is the only modification

(mentioned before) which may affect a package containing no distant t-blocks.

The packages of t-blocks and t′-blocks for t′ > t may, in this step, become

shorter or longer by at most qt. We agree that the bounds on the lengths were

chosen with sufficient tolerance, so that the changed lengths remain within the

same bounds. This ends the inductive construction.

It is important that the above code is applicable to one-sided sequences: even

if the initial package is incomplete, we can still encode its “visible” part in a

way which does not depend upon the “invisible” part.

The above code introduces in φt+1(x) some “irregular” t-blocks at the cutting

places. Every such block inherits its left and right parts from two different

regular t-blocks. Similarly, for each s < t, the same cutting produces irregular

s-blocks. By obvious induction, every φt+1(x) is a concatenation of regular and

irregular s-blocks (perhaps with contents added in rows s + 1, . . . , t + 1). The

cutting algorithm is constructed to ensure that in φt+1(x)

(4.3) the lengths of all irregular s-blocks do not exceed 6ps, and

(4.4) there are at most two irregular s-blocks in every package of s-blocks.
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cut

B0 B0 B0 B0 B0 B0

distant close close close

end of package end of package

copied bottom line

B0 B0 B0 B0 B0 distant close close close

moved end of package end of package

Figure 2. A package of t-blocks before and after modifications.

(We will prove this after the description of the algorithm.)

We will now show that the maps Φt converge uniformly on K̃. In step t + 1

each measure µ ∈ K̃ is moved from Φt(µ) to Φt+1(µ). It suffices to estimate the

distances in consecutive moves by a summable series. Now Lemma 3.2 comes

into play. It asserts, that for every µ ∈ K̃ the value of Φt(µ)(At) is smaller

than ǫ2t /pt = (3ǫ2t )/qt (the definition of At now involves Φt(K̃) rather than K̃).

This implies that for each x in the support of µ, at most a fraction of 3ǫ2t of

the coordinates of the sequence φt(x) (in terms of upper density) fall into the

distant t-blocks. Thus, at most 9ǫt of the coordinates fall into packages which

contain at least one distant t-block. This implies that the modifications in

passing to the image by φt+1 will affect at most 12ǫt of coordinates (we added

3ǫt to include the possibly destroyed rightmost t-blocks in the packages built

entirely of close t-blocks). Thus, for every continuous function f (defined on

matrices) with values between 0 and 1, depending on k coordinates (columns),

the difference |
∫

f dΦt(µ)−
∫

f dΦt+1(µ)| is at most 12kǫt. With an appropriate

choice of the metric for the weak* topology, this implies that

dist(Φt(µ), Φt+1(µ)) ≤ ǫt

and the uniform convergence is proved. We denote by Φ the limit map on K̃.

Let Y be the limit space of the images φt(X̃),

Y =

∞⋂

s=1

∞⋃

t=s

φt(X̃).
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This is a shift-invariant closed set. Assigning S to be the shift map restricted

to Y we complete the definition of (Y, S). It remains to verify the assignment

of this system.

At first we will show that the simplex of invariant measures of (Y, S) coincides

with Φ(K̃). Consider a package Bs of s-blocks occurring in Y . It is a limit, as

t→∞, of packages B
(t)
s of s-blocks occurring in the systems φt(X̃). Every such

package consists of close s-blocks, at most one distant s-block and at most two

irregular s-blocks of at most doubled length. Again, with an appropriate choice

of the metric for measures this implies that the measures µ
B

(t)
s

are at most,

say, 2ǫs away from Φs(K̃). Because convergence of blocks implies convergence

of their periodic measures, and because every ergodic measure on Y is approx-

imated by the measures µBs
(with s increasing), it follows that all invariant

measures of (Y, S) are contained in the limit set Φ(K̃). The other inclusion

is true even in a more general context: for any sequence of closed invariant

subsets Yt in a topological dynamical system (X, T ), and a weakly* convergent

sequence of measures µt, each supported by Yt, respectively, the limit measure

µ is supported by a subset of the limit set
⋂∞

s=1

⋃∞

t=s Yt: this follows from lower

semi-continuity of the map assigning to a measure its topological support.

The next claim which we will prove is the following:

(4.5) for every µ ∈ K̃ µ-almost every x has the property that each coordi-

nate is modified by only finitely many codes φt.

For proving of this claim, consider the set Xt ⊂ X of points whose zero coor-

dinate is affected by the modifications of the code φt+1. As we already know,

the upper density of affected coordinates in µ-almost every x (for µ ∈ K̃) is

not larger than 12ǫt, so, µ(Xt) < 12ǫt. The claim now follows immediately

from summability of the series ǫt, because a matrix x has a column number n

modified infinitely many times if it belongs to the sets T̃−n(Xt) for infinitely

indices t.

The above proved claim (4.5) has an important consequence: the maps φt

converge on a set X ′ ⊂ X̃ such that µ(X ′) = 1 for every µ ∈ K̃. The limit

map φ : X ′ → Y is a Borel-bimeasurable injection: the original x ∈ X ′ is

“memorized” in the (well-defined) bottom line of φ(x). It is elementary, that the

conjugate maps Φt converge to the map conjugate to φ, which hence coincides

with Φ. This implies that for every µ ∈ K̃, the system (X̃, µ, T̃ ) is isomorphic

to (Y, Φ(µ), S) via the map φ, moreover, Φ is injective on K̃. We already know
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that it is onto all invariant measures of Y , and that it is continuous (hence a

homeomorphism). Thus the natural assignment of (Y, S) (i.e., the identity on

Φ(K̃)) is equivalent to the identity on K̃.

It remains to describe the cutting algorithm. It is almost identical as de-

scribed in [D2], but because of a few changed details we repeat the description.

It will be established in t steps enumerated decreasingly t, t − 1, t − 2, . . . , 1.

We begin by placing a temporary mark ∗ 8pt positions left from left end mark

of the considered package of t-blocks in φt(x). This concludes the step t. In

each step s < t we find the nearest “end of package” marker s| (it can also have

the form t′, (s < t′ ≤ t); from now on we skip reminding the reader of this) in

φt(x) left from (or at) the mark ∗, and then we find the nearest marker s| in the

inserted blocks B0 left from there. If the distance between these two markers

s| is at least 16ps then we move the ∗ mark to the position 8ps units left from

the considered marker s| in φt(x), otherwise we put it 8ps units left from the

considered marker s| in the inserted blocks B0 (see Figure 3 below).

B0B0 . . . · · · .............

≥16ps

︷ ︸︸ ︷

s|...................... ....................... · · ·
↑ ↑
∗ ←−−−−−−−−−∗
↓ ↓

φt(x) · · · .......................... ........
︸ ︷︷ ︸

8ps

s|....................... · · ·

or

B0B0 . . . · · · ............
8ps

︷ ︸︸ ︷........

<16ps

︷ ︸︸ ︷

s|............. ....................... · · ·
↑ ↑
∗ ←−−−−−−−−−−−−−−−− ∗
↓ ↓

φt(x) · · · ....................................s|....................... · · ·

Figure 3

Then we pass to step s− 1. The position of the mark ∗ after step 1 is where

we cut.

We need to prove statements (4.3) and (4.4). Assuming them for codes φt′

with t′ ≤ t we need to examine only the “new” irregular s-blocks introduced

by the code φt+1. Initially the mark ∗ is at least 8pt positions away from the
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ends of any packages of t-blocks in φt(x) (and in the inserted blocks B0 there

are no such packages). In the following steps t′ < t the mark is moved by at

most (3pt′)/ǫt′ +24pt′, (recall that (3pt′)/ǫt′ is the maximal length of a package

of t′-blocks) and after that move the distances from the mark ∗ to the nearest

markers t′| in φt′(x) and in the inserted blocks B0 are at least 8pt′ on both

sides. Further moves are small compared with pt′ , hence eventually the cutting

place falls, say, 7pt′ away from the markers t′| in both φ(x) and in the blocks

B0. Now, any irregular s-block created in an earlier code φt′+1 (s ≤ t′ < t) lies

near the end of a package of t′-blocks (it is inside the leftmost t′-block in such

package, which is irregular and whose length, by inductive assumption is at most

6pt′). Thus the “new” irregular s-block is “made” from two regular s-blocks and

hence its length does not exceed 6ps. (4.4) follows from the observation that a

package of s-blocks may contain one irregular s-block near its end (created by

the code φs+1) and at most one irregular s-block created in later codes. It is so,

because the cuts in codes φt′+1 (s ≤ t′ < t) fall in different s + 1-blocks, hence

in different packages of s-blocks.

5. Applications

We can now draw several conclusions from the main theorem 4.1. Some of them

are known, in which case we provide a new proof, some others seem to be new.

Corollary 5.1: (Jewett-Krieger, Rosenthal [R]) If (X, Σ, µ, T ) is a nonperi-

odic ergodic measure-preserving transformation, then it has a topological zero-

dimensional strictly ergodic model (X, T ).

The above follows since any single nonperiodic ergodic measure is a face in

the simplex of invariant measures of the universal zero-dimensional metrizable

system (the full one-sided shift with the Cantor alphabet). Our main theorem

produces a uniquely ergodic zero-dimensional topological model. A minimal

such model is then obtained by Theorem 1 of [D2].

Corollary 5.2: (see Kornfeld-Ormes [K-O] for the invertible case) If K is a

simplex with countably many extreme points then an arbitrary assignment of

nonperiodic ergodic systems to the extreme points of K can be realized in a

minimal zero-dimensional topological dynamical system.
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Proof. It suffices to find a face in the simplex of invariant measures of the

universal system which realizes the assignment. Then the applications of our

Theorem 4.1 and of Theorem 1 in [D2] will complete the proof. We will be us-

ing the following fact: every nonperiodic ergodic measure has isomorphic copies

distributed densely over the simplex of invariant measures of the universal sys-

tem. The proof relies on standard coding techniques and we will leave it to the

reader (for instance, in a uniquely ergodic model one may replace all sufficiently

long t-blocks in a 1-1 manner by t-blocks from a selected small ball).

We are in a position to construct a face realizing the given countable as-

signment. Enumerate the extreme points of K by e1, e2, . . . . In the simplex

of invariant measures of the universal system find an ergodic measure µ1, iso-

morphic to what we want to assign to e1. Next, for d1 = dist(e1, e2), within

the d1-ball around µ1 find an ergodic measure µ2 6= µ1, isomorphic to what

we want to assign to e2. Inductively, let cn be a point in the subsimplex of K

spanned by {e1, e2, . . . , en} closest to en+1, and let dn = dist(cn, en+1). Let νn

be the point corresponding to cn in the subsimplex spanned by {µ1, µ2, . . . , µn}

(corresponding means with the same coefficients). Within the dn-ball around

νn find an ergodic measure µn+1 (different from µ1, . . . , µn) isomorphic to what

we want to assign to en+1. It is now elementary to see that the face spanned

by {µ1, µ2, . . . } is affinely homeomorphic to K and obviously it has the desired

identity assignment on the extreme points.

Corollary 5.3: (see [D1]) For every metrizable Choquet simplex K, there

exists a minimal zero-dimensional dynamical system (X, T ) whose simplex of

invariant measures is affinely homeomorphic to K.

Without using [D1], this follows from: 1) the well-known fact that a metriz-

able simplex in which the extreme points are dense (there is unique, up to affine

homeomorphism, such simplex called the Pulsen simplex) has faces affinely

homeomorphic to all possible metrizable Choquet simplexes, 2) the existence

of a nonperiodic zero-dimensional system whose simplex of invariant measures

is the Pulsen simplex (for example, the direct product of the full shift on two

symbols with an odometer), and 3) the application of Theorem 4.1 and of The-

orem 1 of [D2].

To demonstrate new possibilities revealed by Theorem 4.1 (combined with

theorem 1 of [D2]) we provide the following example, which, to our knowledge,

was unknown.
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Example 5.4: For any pair of positive numbers a < b there exist a minimal

zero-dimensional dynamical system whose all ergodic measures are one-sided (or

two-sided, if one wishes) Bernoulli and form a topological arc parametrized by

their entropies ranging linearly from a to b. Likewise, we can construct minimal

models with all ergodic measures being Bernoulli and arranged topologically

as any preassigned metrizable compact, and with entropy varying continuously

following any preassigned positive continuous function on this compact.

The above follows immediately, because such an arc (or compact set) of

Bernoulli measures is easily found in the simplex of invariant measures of a

full (one or two-sided) shift over a finite or countable alphabet. The spanned

simplex is then a face in the simplex of all invariant measures of the full shift.

Because Bernoulli measures are nonperiodic we can thus obtain a minimal re-

alization.

Remark 5.5: It is important to realize that two Choquet simplexes whose sets

of extreme points are homeomorphic need not be affinely homeomorphic. The

simplest example are simplexes with countably many extreme points arranged

as a sequence µn converging to a nonextreme limit. In one of the simplexes,

this limit can be equal to, say 1/2(µ1 + µ2), in another to 1/4µ1 + 3/4µ2, in

yet another to 1/3(µ1 + µ2 + µ3), etc. However, in the class of Bauer simplexes

(i.e., with compact sets of extreme points), such condition suffices. We have

implicitly used this in the example 5.4.

6. Questions

Let us verbalize some natural questions related to the topological or minimal

realizability of the assignments. Most of these questions are implicit in [D2] or

[K-O], but they deserve to be formulated and commented in one place in order

to indicate possible directions of further investigations.

Question 6.1: Are the families of all topological and of all minimal assignments

essentially larger than the families of topological zero-dimensional and of mini-

mal zero-dimensional assignments, respectively?

Comment: There are many possibilities to replace a system by its zero-dimen-

sional extension without changing the assignment (so-called small boundary

property, see the work of E. Lindenstrauss [L]), and for many examples of
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higher-dimensional systems at least one of these possibilities is available (see

[D2], the list preceding Theorem 2). But not for all of them. Examples are

presented also in [L]. On the other hand, it seems that dimension zero imposes

the weakest possible topological constraints, allowing the highest flexibility for

realizations of measure-preserving systems. So, it is hard to expect that there

exist assignments realizable only on some connected or partly connected spaces.

Question 6.2: Is Theorem 1 of [D2] true for any topological nonperiodic assign-

ment (not necessarily zero-dimensional)?

Comment: This is automatically true if Question 6.1 has a negative answer.

In [D2], Theorem 2, we indicate a class of higher-dimensional systems for which

Theorem 1 still holds (extensions of systems with the small boundary property,

in particular, extensions of zero-dimensional systems). Of course, there is no

indication that the class of topological assignments on such spaces is essentially

larger than that on zero-dimensional ones.

Question 6.3: Is Theorem 4.1 of this work true for any topological nonperiodic

assignment (not necessarily zero-dimensional)?

Comment: Again, this is true if Question 6.1 is false. By the applied “marker

methods”, it is not hard to see that Theorem 4.1 extends to at least the same

class of higher-dimensional systems as indicated in Theorem 2 of [D2].

Question 6.4: By a factor of an assignment Ψ on K we will mean an assign-

ment Ψ′ on some K ′, such that there exists an affine continuous surjection

π : K → K ′ and for every p ∈ K a factor map of measure preserving trans-

formations from Ψ(p) to Ψ′(π(p)). Is every factor of a topological (minimal)

assignment topological (minimal)?

Comment: Every topological dynamical system admits a zero-dimensional ex-

tension. Its assignment is hence a factor (in the above sense) of the assignment

of this extension. Thus, it suffices to answer the question for topological zero-

dimensional assignments. If in addition, one could prove that a factor of such

an assignment is again realizable in dimension zero, this would answer (nega-

tively) the Question 6.1, hence resolve all the other questions formulated above;

minimal assignments would coincide with topological nonperiodic assignments.

This direction seems to be the most promising for further investigations.
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Question 6.5: Is Theorem 4.1 true without assuming nonperiodicity of the face?

Comment: Then the composition with Theorem 1 of [D2] is not possible, but

for Theorem 4.1 alone there are no immediate reasons why it should not hold.

Of course the “marker methods” would have to be essentially modified, because

periodic points do not posses t-markers for large t.

Question 6.6: ([K-O]) Is any topological nonperiodic (perhaps zero-dimensional)

invertible assignment on a simplex K minimally realizable within the orbit

equivalence class of an arbitrary Cantor minimal system whose simplex of in-

variant measures is affinely homeomorphic to K?

Comment: Answering this question requires refinements of the methods used

in [K-O], allowing to deal with uncountably many ergodic measures. See [K-O]

for more comments on such attempts.
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